skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Troncoso-Pastoriza, Juan Ramón"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Providing provenance in scientific workflows is essential for reproducibility and auditability purposes. In this work, we propose a framework that verifies the correctness of the aggregate statistics obtained as a result of a genome-wide association study (GWAS) conducted by a researcher while protecting individuals’ privacy in the researcher’s dataset. In GWAS, the goal of the researcher is to identify highly associated point mutations (variants) with a given phenotype. The researcher publishes the workflow of the conducted study, its output, and associated metadata. They keep the research dataset private while providing, as part of the metadata, a partial noisy dataset (that achieves local differential privacy). To check the correctness of the workflow output, a verifier makes use of the workflow, its metadata, and results of another GWAS (conducted using publicly available datasets) to distinguish between correct statistics and incorrect ones. For evaluation, we use real genomic data and show that the correctness of the workflow output can be verified with high accuracy even when the aggregate statistics of a small number of variants are provided. We also quantify the privacy leakage due to the provided workflow and its associated metadata and show that the additional privacy risk due to the provided metadata does not increase the existing privacy risk due to sharing of the research results. Thus, our results show that the workflow output (i.e., research results) can be verified with high confidence in a privacy-preserving way. We believe that this work will be a valuable step towards providing provenance in a privacy-preserving way while providing guarantees to the users about the correctness of the results. 
    more » « less